Isogeometric shape optimization of photonic crystals via Coons patches
نویسندگان
چکیده
In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have been optimized to maximize the band gaps. Salient features of this approach include the following: 1) Multi-patch Coons representation of design geometry. The design geometry is represented as a collection of Coons patches where the four boundaries of each patch are represented as NURBS curves. The use of multiple patches is motivated by the need for representing topologically complex geometries. The Coons patches are used as a design representation so that designers do not need to specify interior control points and they provide a mechanism to compute analytical sensitivities for internal nodes in shape optimization. 2) Exact boundary conversion to the analysis geometry with guaranteed mesh injectivity. The analysis geometry is a collection of NURBS patches that are converted from the multi-patch Coons representation with geometric exactness in patch boundaries. The internal NURBS control points are embedded in the parametric domain of the Coons patches with a built-in mesh rectifier to ensure the injectivity of the resulting B-spline geometry, i.e. every point in the physical domain is mapped to one point in the parametric domain. 3) Analytical sensitivities. Sensitivities of objective functions and constraints with respect to design variables are derived through nodal sensitivities. The nodal sensitivities for the boundary control points are directly determined by the design parameters and those for internal nodes are obtained via the corresponding Coons patches.
منابع مشابه
Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis
In isogeometric analysis framework, computational domain is exactly described using the same representation as that employed in the CAD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear and easy-to-che...
متن کاملISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کاملOptimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis
In isogeometric analysis (IGA for short) framework, computational domain is exactly described using the same representation as that employed in the CAD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear...
متن کاملIsogeometric analysis and shape optimization via boundary integral
In this paper, we present a boundary integral based approach to isogeometric analysis and shape optimization. For analysis, it uses the same basis, Non-Uniform Rational B-Spline (NURBS) basis, for both representing object boundary and for approximating physical fields in analysis via a Boundary-Integral-Equation Method (BIEM). We propose the use of boundary points corresponding to Greville absc...
متن کاملIsogeometric Structural Shape Optimization Using Particle Swarm Algorithm
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کامل